Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tree resin composition, collection behavior and selective filters shape chemical profiles of tropical bees (Apidae: Meliponini).

Identifieur interne : 000231 ( Main/Exploration ); précédent : 000230; suivant : 000232

Tree resin composition, collection behavior and selective filters shape chemical profiles of tropical bees (Apidae: Meliponini).

Auteurs : Sara D. Leonhardt [Allemagne] ; Thomas Schmitt ; Nico Blüthgen

Source :

RBID : pubmed:21858119

Descripteurs français

English descriptors

Abstract

The diversity of species is striking, but can be far exceeded by the chemical diversity of compounds collected, produced or used by them. Here, we relate the specificity of plant-consumer interactions to chemical diversity applying a comparative network analysis to both levels. Chemical diversity was explored for interactions between tropical stingless bees and plant resins, which bees collect for nest construction and to deter predators and microbes. Resins also function as an environmental source for terpenes that serve as appeasement allomones and protection against predators when accumulated on the bees' body surfaces. To unravel the origin of the bees' complex chemical profiles, we investigated resin collection and the processing of resin-derived terpenes. We therefore analyzed chemical networks of tree resins, foraging networks of resin collecting bees, and their acquired chemical networks. We revealed that 113 terpenes in nests of six bee species and 83 on their body surfaces comprised a subset of the 1,117 compounds found in resins from seven tree species. Sesquiterpenes were the most variable class of terpenes. Albeit widely present in tree resins, they were only found on the body surface of some species, but entirely lacking in others. Moreover, whereas the nest profile of Tetragonula melanocephala contained sesquiterpenes, its surface profile did not. Stingless bees showed a generalized collecting behavior among resin sources, and only a hitherto undescribed species-specific "filtering" of resin-derived terpenes can explain the variation in chemical profiles of nests and body surfaces from different species. The tight relationship between bees and tree resins of a large variety of species elucidates why the bees' surfaces contain a much higher chemodiversity than other hymenopterans.

DOI: 10.1371/journal.pone.0023445
PubMed: 21858119
PubMed Central: PMC3152577


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tree resin composition, collection behavior and selective filters shape chemical profiles of tropical bees (Apidae: Meliponini).</title>
<author>
<name sortKey="Leonhardt, Sara D" sort="Leonhardt, Sara D" uniqKey="Leonhardt S" first="Sara D" last="Leonhardt">Sara D. Leonhardt</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Basse-Franconie</region>
<settlement type="city">Wurtzbourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schmitt, Thomas" sort="Schmitt, Thomas" uniqKey="Schmitt T" first="Thomas" last="Schmitt">Thomas Schmitt</name>
</author>
<author>
<name sortKey="Bluthgen, Nico" sort="Bluthgen, Nico" uniqKey="Bluthgen N" first="Nico" last="Blüthgen">Nico Blüthgen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21858119</idno>
<idno type="pmid">21858119</idno>
<idno type="doi">10.1371/journal.pone.0023445</idno>
<idno type="pmc">PMC3152577</idno>
<idno type="wicri:Area/Main/Corpus">000234</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000234</idno>
<idno type="wicri:Area/Main/Curation">000234</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000234</idno>
<idno type="wicri:Area/Main/Exploration">000234</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tree resin composition, collection behavior and selective filters shape chemical profiles of tropical bees (Apidae: Meliponini).</title>
<author>
<name sortKey="Leonhardt, Sara D" sort="Leonhardt, Sara D" uniqKey="Leonhardt S" first="Sara D" last="Leonhardt">Sara D. Leonhardt</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Basse-Franconie</region>
<settlement type="city">Wurtzbourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schmitt, Thomas" sort="Schmitt, Thomas" uniqKey="Schmitt T" first="Thomas" last="Schmitt">Thomas Schmitt</name>
</author>
<author>
<name sortKey="Bluthgen, Nico" sort="Bluthgen, Nico" uniqKey="Bluthgen N" first="Nico" last="Blüthgen">Nico Blüthgen</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Bees (chemistry)</term>
<term>Bees (classification)</term>
<term>Bees (physiology)</term>
<term>Borneo (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Host-Parasite Interactions (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Models, Chemical (MeSH)</term>
<term>Nesting Behavior (MeSH)</term>
<term>Resins, Plant (chemistry)</term>
<term>Species Specificity (MeSH)</term>
<term>Terpenes (chemistry)</term>
<term>Trees (chemistry)</term>
<term>Trees (classification)</term>
<term>Trees (parasitology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Abeilles (classification)</term>
<term>Abeilles (composition chimique)</term>
<term>Abeilles (physiologie)</term>
<term>Algorithmes (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Arbres (classification)</term>
<term>Arbres (composition chimique)</term>
<term>Arbres (parasitologie)</term>
<term>Bornéo (MeSH)</term>
<term>Comportement de nidification (MeSH)</term>
<term>Interactions hôte-parasite (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Modèles chimiques (MeSH)</term>
<term>Résines végétales (composition chimique)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Terpènes (composition chimique)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Resins, Plant</term>
<term>Terpenes</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Borneo</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Bees</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Bees</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Abeilles</term>
<term>Arbres</term>
<term>Résines végétales</term>
<term>Terpènes</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Arbres</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Abeilles</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Bees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Animals</term>
<term>Ecosystem</term>
<term>Host-Parasite Interactions</term>
<term>Models, Biological</term>
<term>Models, Chemical</term>
<term>Nesting Behavior</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Animaux</term>
<term>Bornéo</term>
<term>Comportement de nidification</term>
<term>Interactions hôte-parasite</term>
<term>Modèles biologiques</term>
<term>Modèles chimiques</term>
<term>Spécificité d'espèce</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The diversity of species is striking, but can be far exceeded by the chemical diversity of compounds collected, produced or used by them. Here, we relate the specificity of plant-consumer interactions to chemical diversity applying a comparative network analysis to both levels. Chemical diversity was explored for interactions between tropical stingless bees and plant resins, which bees collect for nest construction and to deter predators and microbes. Resins also function as an environmental source for terpenes that serve as appeasement allomones and protection against predators when accumulated on the bees' body surfaces. To unravel the origin of the bees' complex chemical profiles, we investigated resin collection and the processing of resin-derived terpenes. We therefore analyzed chemical networks of tree resins, foraging networks of resin collecting bees, and their acquired chemical networks. We revealed that 113 terpenes in nests of six bee species and 83 on their body surfaces comprised a subset of the 1,117 compounds found in resins from seven tree species. Sesquiterpenes were the most variable class of terpenes. Albeit widely present in tree resins, they were only found on the body surface of some species, but entirely lacking in others. Moreover, whereas the nest profile of Tetragonula melanocephala contained sesquiterpenes, its surface profile did not. Stingless bees showed a generalized collecting behavior among resin sources, and only a hitherto undescribed species-specific "filtering" of resin-derived terpenes can explain the variation in chemical profiles of nests and body surfaces from different species. The tight relationship between bees and tree resins of a large variety of species elucidates why the bees' surfaces contain a much higher chemodiversity than other hymenopterans.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21858119</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>02</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2011</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Tree resin composition, collection behavior and selective filters shape chemical profiles of tropical bees (Apidae: Meliponini).</ArticleTitle>
<Pagination>
<MedlinePgn>e23445</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0023445</ELocationID>
<Abstract>
<AbstractText>The diversity of species is striking, but can be far exceeded by the chemical diversity of compounds collected, produced or used by them. Here, we relate the specificity of plant-consumer interactions to chemical diversity applying a comparative network analysis to both levels. Chemical diversity was explored for interactions between tropical stingless bees and plant resins, which bees collect for nest construction and to deter predators and microbes. Resins also function as an environmental source for terpenes that serve as appeasement allomones and protection against predators when accumulated on the bees' body surfaces. To unravel the origin of the bees' complex chemical profiles, we investigated resin collection and the processing of resin-derived terpenes. We therefore analyzed chemical networks of tree resins, foraging networks of resin collecting bees, and their acquired chemical networks. We revealed that 113 terpenes in nests of six bee species and 83 on their body surfaces comprised a subset of the 1,117 compounds found in resins from seven tree species. Sesquiterpenes were the most variable class of terpenes. Albeit widely present in tree resins, they were only found on the body surface of some species, but entirely lacking in others. Moreover, whereas the nest profile of Tetragonula melanocephala contained sesquiterpenes, its surface profile did not. Stingless bees showed a generalized collecting behavior among resin sources, and only a hitherto undescribed species-specific "filtering" of resin-derived terpenes can explain the variation in chemical profiles of nests and body surfaces from different species. The tight relationship between bees and tree resins of a large variety of species elucidates why the bees' surfaces contain a much higher chemodiversity than other hymenopterans.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Leonhardt</LastName>
<ForeName>Sara D</ForeName>
<Initials>SD</Initials>
<AffiliationInfo>
<Affiliation>Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schmitt</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Blüthgen</LastName>
<ForeName>Nico</ForeName>
<Initials>N</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>08</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012116">Resins, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013729">Terpenes</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001516" MajorTopicYN="N">Bees</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001893" MajorTopicYN="N" Type="Geographic">Borneo</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006790" MajorTopicYN="N">Host-Parasite Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008956" MajorTopicYN="N">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009425" MajorTopicYN="N">Nesting Behavior</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012116" MajorTopicYN="N">Resins, Plant</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013729" MajorTopicYN="N">Terpenes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="Y">parasitology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>11</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>07</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21858119</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0023445</ArticleId>
<ArticleId IdType="pii">PONE-D-10-05103</ArticleId>
<ArticleId IdType="pmc">PMC3152577</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Entomol. 2001;46:31-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11112163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Feb 10;311(5762):812-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 Nov;90(11):2994-3008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19967856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Oct 26;294(5543):804-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11679658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 2008 Aug;211(Pt 15):2442-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18626078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19891-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18056808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Ecol. 2006;6:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16907983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Genet. 1988 Jul;18(4):439-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3190638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Feb 20;17(4):341-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17275300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Feb 10;311(5762):815-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1974 Apr 12;248(449):614-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4824034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Physiol. 2009 Feb;55(2):158-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19041322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2011 Jan;37(1):98-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21165680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1974 May 31;184(4140):996-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4207808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Zool. 2008 Oct 20;5:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18937827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Physiol. 2005 Sep;51(9):995-1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15950236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Mar;15(3):167-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20047849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2008 May;21(3):801-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18355187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2009 Oct;35(10):1151-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19866237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2009 Oct;35(10):1172-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19813058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2004 Aug;79(3):497-532</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15366761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Nov 5;286(5442):1123-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10550043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1982 Sep;8(9):1227-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24413965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2009 Nov;103(5):416-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19654611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(4):707-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Biochem Mol Biol. 2008 Feb;38(2):244-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18207084</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Bavière</li>
<li>District de Basse-Franconie</li>
</region>
<settlement>
<li>Wurtzbourg</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Bluthgen, Nico" sort="Bluthgen, Nico" uniqKey="Bluthgen N" first="Nico" last="Blüthgen">Nico Blüthgen</name>
<name sortKey="Schmitt, Thomas" sort="Schmitt, Thomas" uniqKey="Schmitt T" first="Thomas" last="Schmitt">Thomas Schmitt</name>
</noCountry>
<country name="Allemagne">
<region name="Bavière">
<name sortKey="Leonhardt, Sara D" sort="Leonhardt, Sara D" uniqKey="Leonhardt S" first="Sara D" last="Leonhardt">Sara D. Leonhardt</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000231 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000231 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21858119
   |texte=   Tree resin composition, collection behavior and selective filters shape chemical profiles of tropical bees (Apidae: Meliponini).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21858119" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020